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|. BACKGROUNDS
i. The Central Dogma

e Single nucleotide polymorphisms (SNPs) are sites of variation in our DNA
* Gene expression (GE (Z)) is the level of mRNA in one cell type. Bulk level GE
(G) is the combined GE of all cell types in a tissue.
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Cell-type-specific biological data is
resource intensive and expensive

lll. RESULTS

i. Simulated data

The method possesses sufficient power to The variance explained by the model is
detect cell-specific expression-phenotype lower than the theoretical upper bound

Cell-type-specific gene expression imputed from effect size for external cohorts
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ii. Real data
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IV. CONCLUSION

Cell-specific expression-phenotype associations in large datasets (UK BioBank)) could
be learnt with its SNPs and readily available, abundant datasets with bulk level gene
expressions.
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